Nitrogen Absorption and Desorption Characteristics for CeFe₇

Masahiro Itoh, Ken-ichi Machida,*† Kazuhiro Hirose, and Gin-ya Adachi*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 †Collaborative Research Center for Advanced Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

(Received January 5, 2001; CL-010002)

Reversible nitrogen absorption and desorption cycle of $CeFe_7$ and Ce_2Fe_{17} was performed by heating in NH_3 or N_2 for nitrogenation and in H_2 for denitrogenation. The nitrogen absorption and desorption rates for $CeFe_7$ were faster than that for Ce_2Fe_{17} owing to the high diffusion rate of nitrogen for $CeFe_7$, resulting that the nitrogen absorption and desorption property of $CeFe_7$ was superior to that of Ce_2Fe_{17} .

It has been found that iron-based intermetallic compounds such as RE_2Fe_{17} , $TMFe_2$ (RE=rare earths, TM=transition metals) can reversibly absorb and desorb nitrogen via the formation of interstitial-type metal nitrides in a similar manner as hydrogen in the metal hydrides such as $LaNi_5$. The nitrogen desorbed from their lattices easily reacts with hydrogen to generate ammonia in about 100% of yield because the nitrogen in the metal nitrides exists as an atomic state and is highly reactive in a manner similar to the hydrogen in the interstitial-type metal hydrides. 4.5

In this work, the nitrogen absorption and desorption properties for CeFe $_7$ and Ce $_2$ Fe $_{17}$ were characterized. Both compounds belong to the Th $_2$ Zn $_{17}$ -type ones with space group of $R\bar{3}m.^6$ It is noted that Fe (6c) sites are fully occupied (occ=1) in the unit cell for Ce $_2$ Fe $_{17}$, whereas Fe (6c) sites are partially deficient (occ=2/3) and Ce atoms occupy at 3a sites (occ=1/3) for CeFe $_7$. Therefore, CeFe $_7$ is regarded as iron-deficient Ce $_2$ Fe $_{17}$ compound, so that nitrogen would diffuse more readily in the bulk of CeFe $_7$ than that of Ce $_2$ Fe $_{17}$. The differences of nitrogen absorption and desorption properties between CeFe $_7$ and Ce $_2$ Fe $_{17}$ are discussed from the viewpoint of the activation energy for nitrogen diffusion in their bulk.

The preparation of $CeFe_7$ and Ce_2Fe_{17} were made by the conventional arc melting method. The ingots obtained were annealed in He at 1073 K for 48 h, and then ground into powders with diameters below 50 µm. The samples prepared were checked by XRD. The respective surface area values of CeFe₇ and Ce₂Fe₁₇ were 0.22 and 0.25 m² g⁻¹. Each powder of CeFe₇ or Ce₂Fe₁₇ (1 g) was charged in fixed-bed quartz tube and nitrogenated at 573–773 K for 1–3 h in NH₃ or N₂ with a flow rate of 30 mL min⁻¹. The hydrogenation (denitrogenation) was subsequently carried out at 523-723 K for 1-3 h in H₂ with the same rate as NH₃ or N₂. Nitrogen contents of the resulting metal nitrides were determined by a nitrogen/oxygen analysis. Amounts of the nitrogen desorption were evaluated from the difference of nitrogen contents before and after the denitrogenation. Nitrogen species in the denitrogenation were characterized on mass spectrometry. The catalytic activity of ammonia decomposition over CeFe7 and Ce2Fe17 was measured by gas chromatograph. The NH₃-He mixed gas (5 vol % of NH₃) was flowed with a rate of 20 mL min⁻¹ g⁻¹. The conversion from NH₃ to N₂ and H₂ was calculated by integrating their peak areas.

The XRD pattern of CeFe₇ was mainly assigned to the Th₂Zn₁₇-type structure, but some weak peaks derived from CeFe₂ phase were also observed owing to the peritectical reaction between CeFe₂ and CeFe₇ during the cooling step. On the other hand, Ce₂Fe₁₇ was obtained as a single phase of Th₂Zn₁₇type compound. The nitrogenation reactions for CeFe7 and Ce₂Fe₁₇ were performed in NH₃ at 623 K for 1 h. The nitrogen contents per formula unit for CeFe₇ and Ce₂Fe₁₇ after nitrogenation were 2.97 and 4.19, respectively. The nitrogen content per metal (N/M) for CeFe₇ was 0.37 (=2.97N/[Ce+7Fe]), which is higher than that for Ce₂Fe₁₇ (N/M=0.22). After the subsequent denitrogenation for each metal nitride in H₂ at 723 K for 1 h, the respective amounts of the nitrogen desorbed per the chemical formula units for CeFe₇ and Ce₂Fe₁₇ were 1.57 and 1.95 (Δ N/M=0.20 and 0.10). The usable amounts of nitrogen through the absorption and desorption from 1cm^3 of CeFe_7 ($\rho =$ 7.97 g) and Ce_2Fe_{17} ($\rho=7.71$ g) were 285 and 152 cm³ converted as N₂ at 273 K and 0.1 MPa, respectively. These values were higher than that of high-pressure N2 cylinder stuffed at 15 MPa at 298 K; the amount of nitrogen stored per 1cm³ of it is calculated to be 137 cm³. Additionally, it was found from the measurement of dependency of nitrogenation time for nitrogen concentration that nitrogenation of 673 K for 1 h attained the saturation of nitrogen absorption for CeFe₇ and Ce₂Fe₁₇. The respective usable amount of nitrogen (N₂) per 1 cm³ of CeFe₇ and Ce₂Fe₁₇ were 405 and 356 cm³ (Table 1). The nitrogen storage ability of CeFe₇ is highest among the materials studied in our previous works. 1-3

Table 1. Nitrogen storage abilities of CeFe₇ and Ce₂Fe₁₇

Materials -	Nitrogen contents / x		Usable amount
	After	After	of N ₂ /cm ^{3 a}
	nitrogenation	denitrogenation	
Nitrogenation in NH ₃ at 623 K for 1 h			
$CeFe_7N_x$	2.97	1.57 ^b	285
$Ce_2Fe_{17}N_x$	4.19	1.95 ^b	152
Nitrogenation in NH ₃ at 673 K for 1 h			
$CeFe_7N_x$	4.32	2.10 b	405
$Ce_2Fe_{17}N_x$	8.86	4.28 ^b	356
Nitrogenation in N ₂ at 773 K for 3 h			
CeFe ₇ N _x	1.31	1.21 °	18.5
N_2	_	_	137
cylinder			157
TiFe ₂ N _x d	1.57	0.99	278

 $^{^{\}text{a}}\text{The}$ usable amounts of nitrogen were represented as the amounts of N_2 generated from the materials per unit volume (1 cm³). $^{\text{b}}\text{Denitrogenation}$ in H_2 at 723 K for 1 h.

Denitrogenation in H₂ at 723 K for 1 h.

 $^{^{\}rm d}$ Nitrogenation in NH $_3$ at 723 K for 3 h and denitrogenation in H $_2$ at 723 K for 3 h

Chemistry Letters 2001 295

The mass spectrometry of the gaseous product in the denitrogenation for CeFe_7N_x demonstrated that the nitrogen released from the metal nitride reacts with hydrogen to generate ammonia. Further, the amounts of ammonia product determined by monitoring the pH values of H_2SO_4 solution trap before and after the denitrogenation fairly agreed with the results as directly determined by their nitrogen analyses. These facts mean that the atomic nitrogen liberated from the crystal lattice is converted to ammonia in about 100% of yield.

The activity of ammonia decomposition over CeFe₇ and Ce₂Fe₁₇ was measured by gas chromatograph. The conversion of ammonia decomposition at 573 K attained 90 % for CeFe₇, while 67 % for Ce₂Fe₁₇. The activity of ammonia decomposition over CeFe₇ was higher than that over Ce₂Fe₁₇. Activation energy values of nitrogen diffusion in the grain of CeFe₇ and Ce₂Fe₁₇ were estimated from the model proposed by Uchida et al.7 Measurements of the nitrogen desorption rates for CeFe₇N_{3.0} and Ce₂Fe₁₇N_{7.54} resulted in the activation energy values of nitrogen diffusion for CeFe₇ and Ce₂Fe₁₇ to be 69 and 102 kJ/mol, respectively (Figure 1). From the viewpoint of crystal structure for both compounds, Fe(6c), Ce(6c), and Ce(3a) sites are aligned to c-axis with their respective coordinates (z) of 0.103, 0.340, and 0 as a hexagonal unit. Since the Fe(6c) sites are fully occupied for Ce_2Fe_{17} , the nearest neighbor distance for Fe(6c)-Ce(6c) is calculated to be 0.294 nm. Meanwhile, the Fe(6c) sites are partially deficient and Ce occupies at 3a sites for CeFe₇, resulting that the nearest neighbor distance for Ce(3a)–Ce(6c) is 0.421 nm. The interatomic distance of 0.127 nm for Fe(6c)–Ce(3a) is too short to form such bonding. Therefore, the packing density along the c-axis for CeFe₇ is lower than that for Ce₂Fe₁₇. Nitrogen would diffuse more readily in CeFe₇ than Ce₂Fe₁₇. It is considered that the nitrogen absorption proceeds through the dissociation of ammo-

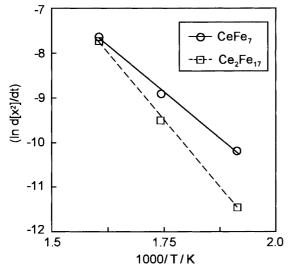


Figure 1. Arrhenius plots of the nitrogen desorption rate of $CeFe_7$ and Ce_2Fe_{17} .

nia molecules and the successive diffusion into the bulk for atomic nitrogen adsorbed on the surface. The excellent property of nitrogen absorption and desorption over $CeFe_7$ is ascribable to the high catalytic activity of ammonia decomposition over it and the ease of nitrogen diffusion in the bulk. In addition, the high nitrogen storage ability of $CeFe_7$ is attributable to the richer atomic concentration of $CeFe_7$ (12.5 at %) than that for Ce_2Fe_{17} (10.5 at %) due to the large standard enthalpy of formation for CeN (~320 kJ/mol).

The nitrogenation for CeFe₇ was conducted by heating in N₂ at 773 K for 3 h. The nitrogen content per chemical formula was 1.31 after nitrogenation. The following nitrogen desorption reaction was carried out in H2 at 723 K for 3 h to desorb nitrogen down to CeFe7N1.21. The amount of nitrogen regenerated per 1 cm³ of CeFe₇ was 18.5 cm³ that sharply decreased compared with the case of nitrogenation in NH₃ (Table 1). The respective bond energy values of N-H in NH₃ and N≡N are 431 and 941 kJ mol $^{\!-1}$. The dissociation of strong triple bond of N_2 is considered to be a rate-determining step for nitrogen absorption reaction. The generating nitrogen species in the denitrogenation was detected to be ammonia from the mass spectrometry. The resulting amount of ammonia product per 1 g of CeFe₇ was 210 umol. The above nitrogen absorption and desorption cycle is regarded as a novel nitrogenation process of hydrogen by fixing nitrogen from N₂ through the formation of interstitial-type metal nitride, since the highly reactive atomic nitrogen in the crystal lattice easily reacts with hydrogen to generate ammonia in about 100 % of yield.

This work was partly supported by Grant-in-Aid for Scientific Research No. 12450352 from the Ministry of Education, Science, Sports, and Culture of Japan. The author (M.I.) is the Fellowship member of the Japan Society for the Promotion of Science for Japanese Junior Scientists.

References and Notes

- K. Machida, M. Itoh, K. Hirose, and G. Adachi, *Chem. Lett.*, 1998, 1117.
- 2 M. Itoh, K. Machida, H. Nakajima, K. Hirose, and G. Adachi, *J. Alloys Compd.*, **288**, 141 (1999).
- 3 M. Itoh, K. Machida, K. Hirose, T. Sakata, H. Mori, and G. Adachi, *J. Phys. Chem. B*, **103**, 9498 (1999).
- 4 K. Soga, H. Imamura, and S. Ikeda, J. Phys. Chem., 81, 1762 (1977).
- 5 S. Suda, K. Iwata, Y-M. Sun, Y. Komazaki, and F-J. Liu, *J. Alloys Compd.*, **253** 668 (1997).
- 6 A. E. Ray, Acta Crystallogr., 21, 426 (1966).
- 7 H. Uchida, S. Tachibana, T. Kawanabe, Y. Matsumura, V. Koeninger, H. H. Uchida, H. Kaneko, and T. Kurino, *J. Alloys Compd.*, 222, 107 (1995).
- 8 The atomic positions for Ce and Fe are referred from PrFe₇ in ref 6. The Crystal structures for CeFe₇ and PrFe₇ belong to Th₂Zn₁₇-type compound. Their XRD patterns are quite similar and are indexed by the same Miller number for respective diffraction peaks.